
A Crash Course in
OpenCTI

By: Coleman Kane
DeepSeas

What is OpenCTI?
https://filigran.io/solutions/products/opencti-threat-intelligence/

Cyber Threat Intelligence (CTI) Database

● Emphasis on automation, visualization, and
standards compliance

● STIX 2.1 internal representation (JSON)
● TAXII server/client support
● Modern tech stack: React/Node.js, ElasticSearch,

RabbitMQ
● API-first design via Low-level GraphQL API
● Fully asynchronous UI
● High-level API library in Python
● Modular plug-in extensibility through the

“connectors” ecosystem
● Data scraping automation
● Case and Knowledge management features

https://filigran.io/solutions/products/opencti-threat-intelligence/

Filigran: the Company Supporting OpenCTI

Based in France (Paris)

Committed to Open Source and Open Standards (e.g. STIX, TAXII, ATT&CK)

“Community Edition” open-sourced under Apache License 2.0

“Enterprise Edition” open-sourced under a proprietary non-commercial license

Other projects: OpenCrisis, OpenEx (simulation/exercises), OpenRiskManager

STIX documentation: https://oasis-open.github.io/cti-documentation/stix/intro

https://oasis-open.github.io/cti-documentation/stix/intro

UI Overview: Listings

Main
nav-menu

Secondary nav-menu Filter menu & summary
Global tools / functions

Main content
view

Create new
object of
current type

UI Overview: Entity

Notes
about this
entity

Contents/context
summary

Marking definition

User
feedback

Edit entity

List of external
references to the
entity

Tools to use
on entity

Arbitrary
labeling/tagging

UI Overview: Knowledge Graphs

Graph
view/layout
options

Interactive
Graph

Tools to
operate on
selections

Selection tools

Different
visualizations

Add entity to graph

Filters

STIX Data Model

Analysis: Document CTI Reports & Build Products

Reports: Threat Intel reports, actor analysis,
blog posts, etc.

Groupings: Less formal groupings - reports,
but without the narrative content

Malware analyses: Reports focusing on
Malware, and adhering to the
“malware-analysis” STIX 2.1 entity

Notes: Global view of any notes in the
platform

External References: Global view of all
external reference links in the platform

Cases: Manage related work

Incident Response: Manage tasks and
context that will occur during incident
response

RFI: Dedicated tasking/context container for
non-Incident requests to Intel team

Request for Takedown: Similar to RFI/IR, but
specific for externally-directed takedown
requests

Tasks: Global view of all tasks

Feedback: Global view of all user feedback

Events: Temporal Info and Related Analysis

Incidents: Serious events, typically that
necessitated incident response

Sightings: Location, temporal, and frequency
information related to an observation

Observed Data: Temporal information related
to an observation

Observations: Collected Data and Detections

Observables: Data points observed when
investigating malicious activity

Artifacts: Unstructured data paired with
structured metadata representing
files/malware/images/memory/etc. collected
during analysis

Indicators: Detection-suitable data points.
STIX 2.1 defines these to be derived from
Observables, and also represent complex
signature data (Yara, Suricata, Sigma, etc.)

Infrastructures: Specialized container
documenting infrastructure analysis

Observables vs. Indicators

A lot of confusion due to varying definitions across orgs

Common to see “indicator” refer to both element types

● Observable: Information I’ve seen during an analysis or investigation
● Indicator: Of what I’ve seen, the subset and/or combination that would be indicative

of future malicious activity

STIX 2.1 has a formal definition of both, and OpenCTI adheres to that standard

● https://oasis-open.github.io/cti-documentation/examples/sighting-of-an-indicator
● https://oasis-open.github.io/cti-documentation/examples/sighting-of-observed-data

https://oasis-open.github.io/cti-documentation/examples/sighting-of-an-indicator
https://oasis-open.github.io/cti-documentation/examples/sighting-of-observed-data

Threats: Individual and Group Operations

Threat Actors: Identifiable Groups or
individuals that operate intrusion sets for
cyber operations

Intrusion Sets: Activity sets that represent
consistent means, motivations, and targeting.
Tying to actual threat actors may take time.
Most published “groups” in CTI fit into this
category

Campaigns: Series of attempts carried out by
an intrusion set to achieve an objective.
Typically incorporates a time-bound and
distinct tooling & TTPs.

Similar to Observables/Indicators, Threats
adhere to the STIX 2.1 standard definitions,
which may often differ from how these terms
may be used in a lot of orgs.

https://oasis-open.github.io/cti-documentation/examples/defining-campaign-ta-is

https://oasis-open.github.io/cti-documentation/examples/defining-campaign-ta-is

Arsenal: Adversary Toolbox

Malware: Types of malware known to be used
by adversaries.

Channels: Online locations where adversaries
may disseminate information

Tools: Tools used by the adversary - typically
tools that aren’t inherently malware (LOLbins,
etc.)

Vulnerabilities: Vuln data that can be
populated from national CVE registry.

Techniques: Operations and Methods

Attack Pattern: Attack patterns and adversary
techniques - includes (but not limited to)
MITRE ATT&CK

Narratives: Specific to disinfo - concepts and
messaging being propagated for persuasion

Courses of Action: Defender-side techniques
that can be used for prevention and mitigation

Data sources: Data sources available from
sensors/logs/collection

Data components: Data within a source
relevant to detecting a particular technique

Entities & Locations: Who, When, & Where

Entities: Organizations, Sectors, Events
(non-activity), Systems, Individuals - often used
for targeting and attribution

Locations: Geographical information: Region,
Country, City, Area, Position

Importing Document Data

PDF Import
Data import

New analyst
workbench

Plain Text
copy/paste import

Analyst Workbench When ready for import, click here

Observables matching standard
patterns auto-extracted and
created

Pre-modify
observables and
entities before import

Entities are matched to existing names &
aliases in the database

Add new entities/observables manually

Selection can be deleted from
import work

Import Complete

Extension Framework
(Connectors)

Extend OpenCTI With Connectors

Five types
● Internal Import File: Translate an uploaded file into STIX and import it (via workbench)
● Internal Export File: Translate selected STIX data from OpenCTI into a downloadable file
● External Import: From an external online source, convert source data to STIX and import
● Enrichment: Perform automated analysis on STIX data in the database, and add/delete context on it
● Stream: Operate continuously on data entering OpenCTI to feed it to external sources, or vice-versa

Deployed as Python containers

Uses the same Python API as Python scripts, with some additional features and RabbitMQ access

Templates in GitHub repository so new connectors can be written with some direction

Connectors: https://github.com/OpenCTI-Platform/connectors
Python API: https://github.com/OpenCTI-Platform/client-python

https://github.com/OpenCTI-Platform/connectors
https://github.com/OpenCTI-Platform/client-python

Easy OSINT Collection Instance

Identified all “free” and “public” plugins

Created a docker-compose.yml to deploy them all

Made a Terraform recipe to quickly deploy to AWS

My Docker fork (branch tf-main): https://github.com/ckane/opencti-docker/tree/tf-main
OpenCTI “vanilla” docker: https://github.com/OpenCTI-Platform/docker

Terraform recipe (branch ckane-dockers):
https://github.com/ckane/opencti-terraform/tree/ckane-dockers

https://github.com/ckane/opencti-docker/tree/tf-main
https://github.com/OpenCTI-Platform/docker
https://github.com/ckane/opencti-terraform/tree/ckane-dockers

Quick Start - Test on Local System Using Docker

1) Download ckane’s opencti-docker
git clone -b tf-main https://github.com/ckane/opencti-docker.git
cd opencti-docker

2) Edit .env and fill in blanks
cp .env.sample .env
vim .env
Run 'uuidgen -r' multiple times to generate new UUID for each
blank *_ID= line in .env
while grep _ID=$.env > /dev/null; do
 new_uuid="${uuidgen -r}"
 sed -i "0,/_ID=\$/{s/_ID=\$/_ID=${new_uuid}/}" .env
done

3) Generate login email, password, API token
sed -i "s/^OPENCTI_ADMIN_EMAIL=.*$/OPENCTI_ADMIN_EMAIL=you@you.com/" .env
sed -i "s/^OPENCTI_ADMIN_PASSWORD=.*$/OPENCTI_ADMIN_PASSWORD=MemorizedSecret/" .env
sed -i "s/^OPENCTI_ADMIN_TOKEN=.*$/OPENCTI_ADMIN_TOKEN=$(uuidgen -r)/" .env

4) Start docker
docker-compose -f docker-compose.yml up -d

OpenCTI will come up listening on HTTP port 8080 on localhost

https://github.com/ckane/opencti-docker.git
mailto:you@you.com

Other Features

UI Overview: Yara Rule

Related entities
or observables

Rule code - editable in
browser UI or via API

Pattern type - admin can
add more types

Reports that contain
this signature

Control
deployment with
“Detection”
switch

Labels/tags

UI Overview: Advanced GraphQL Query

Provide HTTP
Auth token, and
query input vars

Enter query and/or
mutation here

Output results in
right pane

Full Schema and
API
documentation

Thanks! Any Questions?
Coleman Kane - DeepSeas
https://blog.malware.re/ (website)
@colemankane@infosec.exchange (Mastodon)
@colemankane (Twitter)

https://blog.malware.re/

THANK YOU!
TO OUR SPONSORS

